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ABSTRACT

This report reviews work carried out to identify promising techniques for
determining the major acoustic mechanisms governing scattering from the
subbottom in shallow water. Two approaches were investigated: (1) the
application of T-matrix scattering theory to scattering from geological features in
the subbottom, and (2) the coupled differential equation theory of gradient driven
coupling of shear and compressional waves. T-matrix theory is well developed
and has most of the characteristics needed for application to modeling scattering
from the subbottom. T-matrix theory is a full wave approach, has few
fundamental restrictions, includes both compressional and shear waves, applies
to multiple structured scatterers of quite general shape, and can be formulated
for a waveguide geometry. The basic theory of gradient driven coupling has
been developed, but still has some features that are not well understood. The
theory predicts “resonance frequencies” at which coupling between shear and
compressional waves may be greatly enhanced. The resonance frequencies can
be fairly high (>1 kHz) for gradients estimated for volume inhomogeneities in
shallow water sediments. The effects of the resonance have not been studied
nor has a stochastic theory of gradient driven coupling been developed. This
report concludes with some recommendations for future research to extend these
approaches and to apply them to understanding scattering from the subbottom.



. INTRODUCTION

Researchers face formidable challenges in determining the major acoustical
processes affecting acoustic propagation in shallow water and in developing the
databases and stochastic models needed to accurately predict the acoustic field.
The challenges arise from the complexity of the acoustic environment (water
column and subbottom). The environment is characterized by variability on
scales that affect propagation from Very Low Frequencies (5 Hz) to ultrasonic
frequencies (1 MHz) frequencies. Internal waves, fine structure of the water
column, subbottom inhomogeneities and layers, bottom bathymetry and
roughness have all been suggested as significant environmental parameters.
The challenge is to understand the physics of these processes well enough to
develop the simplified models and databases needed for adequately predicting
the performance of Navy acoustic systems.

An essential component of the solution to this problem is an understanding of
scattering from the seafloor and subbottom. Scattering produces the
reverberation, frequency spread, time spread, and angle spread that affect naval
acoustic systems. Yamamoto' has developed a stochastic theory of scattering
from measured velocity and density inhomogeneities that produced estimates of
backscatter strength that are consistent with measured backscatter in the 100 Hz
to 10 kHz frequency range. Other work by Anderson? demonstrated that bottom
backscatter at 6.5 kHz could be explained by scattering from density and velocity
fluctuations measured in cores. The fluctuations in density and velocity in the
subbottom in shallow water are important sources of acoustic scattering that
need to be included in Navy models and databases.

To develop adequate models and databases for predicting these phenomena, an
accurate representation of seafloor structure (bathymetry, bottom roughness, and
subbottom structure) is needed on the scale of an acoustic wavelength. Recent
work has made progress toward providing structure on this scale. Yamamoto®
has developed the technology of borehole tomography and produced the first
direct measurements of velocity inhomogeneities (as opposed to distinct layers)
in the upper 50 m of the subbottom on scales ranging from less than 1 m to
about 10 m. Goff and Jordan* have developed a stochastic bathymetry model
that has the potential for extrapolating multibeam bathymetry data to millimeter
scales. Other work by Orsi® uses x-ray tomography of cores to provide millimeter
to centimeter scale measurements of density fluctuations.

This report describes research carried out by Science Applications International
Corporation from 1995 to 1998 to develop the technology for understanding
scattering from the seafloor and subbottom in shallow water at frequencies from



100 Hz to 10 kHz. The overall objective of this research was to develop
stochastic acoustic and geological models for accurate numerical simulation of
the effects of scattering from the seafloor. There were three technical goals.
First, to develop a quantitative understanding of the role of subbottom
inhomogeneities in producing reverberation and FAT (frequency, angle, and
time) spreads in shallow water. Second, to develop stochastic models describing
subbottom parameters producing scattering. Third, to develop acoustic models
for predicting FAT spreads and reverberation from stochastic geological models.
Due to a funding shortfall, the scope of our work was reduced and focused on the
first goal.

We concentrated on two theoretical approaches that looked promising for
application to scattering from subbottom inhomogeneities. The first was the T-
matrix approach to scattering. We examined this technique and found that it has
all the attributes necessary for application to scattering from objects buried in the
subbottom. The second was the coupled potential approach for predicting
gradient driven coupling between shear and compressional waves. This
approach appears suitable for application of the Born approximation for
predicting scattering from subbottom velocity and density fluctuations. Both of
these approaches are reviewed below.

As a result of our work, we recommend that additional research be carried out to
develop the numerical implementation of both of these approaches for the
prediction of time and angle spreading of acoustic signals.

Il. PRELIMINARY RESEARCH

We began our research with some two preconceived notions. The first of these
was that we were looking for approaches with the fewest theoretical limitations.
Our goal was to develop an approach that could be used for sensitivity studies to
identify the major mechanisms and parameters that would be needed for
modeling the performance of naval systems. To carry out these studies we felt
that accuracy was paramount in the research model so that as many physical
mechanisms as possible were included. The sensitivity studies, not our model,
should identify the important mechanisms and parameters. The second notion
was that the large gradients associated with volume inhomogeneities might make
gradient driven coupling of shear and compressional waves a significant process
in shallow water. This idea was based on the recent reports that velocity
fluctuations could have gradients an order of magnitude larger than those
previously considered.



Ill. T-MATRIX APPROACH TO SCATTERING

Our research began with a survey of recent publications in the Journal of the
Acoustical Society of America to identify potential approaches to scattering. By
far, we found that the majority of publications between 1976 and 1994 dealing
with scattering were based on the T-matrix approach or some variant of it. We
found publications dealing with scattering of acoustic waves, scattering of elastic
waves, multiple scattering, scattering by various shaped objects, scattering from
objects with internal resonances, and scattering from objects in a waveguide.
While the T-matrix approach has been applied to scattering from objects buried
in the seafloor, it has not yet been applied to scattering from sedimentary
layering in the subbottom. It appeared from this survey that the T-matrix
approach should be examined for its suitability for predicting scattering from
subbottom inhomogeneities.

Waterman® originally developed the T-matrix approach for acoustic scattering
problems. The approach uses the Helmholtz integral equations that relate the
scattered field to the incident field and an integral of the total field on the surface
of the scattering object. The incident and scattered fields are expanded in terms
of a set of basis functions, such as spherical harmonics. The essence of the T-
matrix approach is to use two surface integral equations, one for an observation
point inside the scattering object and the other for a point outside the scattering
object, to obtain a relationship between the expansion coefficients of incident and
scattered fields. The matrix relating the coefficients is the transition matrix, the
“T-matrix”. The T-matrix depends only on the shape of the scattering object and
the boundary conditions. The only mathematical limitations imposed by the
theory are that the shape of the scatterer allow an inscribed and circumscribed
sphere for defining the spherical wave functions used as a basis set for the
incident and scattered field. Otherwise, the scattering surface can have almost
any shape.

The T-matrix approach proved to be very general and has been applied to
scattering of elastic and electromagnetic waves. In these cases, the
mathematics is more complicated than that for acoustic scattering because one
must deal with vector fields and tensor Green'’s functions. Ref. 7 is a
comprehensive listing of publications, as of 1988, extending and applying the T-
matrix approach and Ref. 8 is collection of early work on the T-matrix. A unified
view of T-matrix theory for acoustic, elastic, and electromagnetic problems is
given in Ref. 9 while a recent review article’® concentrates on application to
scattering from structured objects with resonances.



For the research reported here, we examined papers on the application of T-
matrix theory to elastic scattering®'''®, scattering from objects with
attenuation'”'8, multiple scattering’®?, scattering from structured objects
scattering from non-spherical objects?"*, scattering from objects in a layered
medium®*** and scattering in a waveguide®". Our major focus was to
understand the theory well enough to determine the feasibility of applying it to
scattering from subbottom inhomogeneities. We did not identify any fundamental
limitations that would exclude it from this application.

18,24-26
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A. Acoustic scattering

We will follow the approach of Waterman® in briefly outlining the derivation of the
fundamental T-matrix equations. Waterman examines the total acoustic field, ¥,
being made up of an incident field, ¥', and a scattered field, ¥S. His starting point
is the Green’s theorem for scalar fields® relating the fields inside and outside a
bounding surface to the sources of the field and the field on the surface. This is
essentially Huygen’s principle. The geometry is shown in Fig. 1. There are no

Sphere at infinity

Figure 1. Geometry for a single scatterer.

sources within the scatterer. In this case the bounding surface is that of the
scattering object () and a sphere at infinity. The volume we consider is all
space excluding the interior of the scattering object, i. e., the interior of the
scatterer is the exterior of our volume. On the surface (o) of the scatterer, the
outward normal of the surface bounding our volume is m which is in the opposite
direction to the outward normal of the surface bounding the scatterer, a. The



source is has a single frequency and has an exp(-iot) time dependence. There
are two integral equations, one for an observation point in our volume and one
for an observation point, outside our volume. For a point within the volume,
Green'’s theorem is

¥(r) =V (r) +217; I dot * [‘I’+ (e We(k,lr-r]) -g(k,r- r’I)V+‘I‘(r')] (1)

where: r is an observation point inside the volume, r’ is a point on the surface o,
k, =w/c, is the wavenumber of the acoustic field, ¢, is the sound speed of the
medium, ¥, and V, ¥ are the total field and its gradient on the surface of the
scatterer (on the outside of the scatterer), and g is the free space scalar Green's
function. The free space Green'’s function satisfies Vg +k g = 47r5(r —r') and is
given by

ik,R
e

glk,R)=ik h0(k R)=

where: R =|r—r’| and A" is the Hankel function of the first kind of order zero.
The Green’s function represents an outgoing spherical wave from a source at r’.

The second integral equation is
,. 1 .. , ) y ,
0="¥'(r)+~ [dor [‘I'+(r We(k,lr=r1) -g(k,r-r)V, ¥ )] )

where the observation point r is now outside the volume (inside the scatterer).
This equation states that the incident field and the field generated by the virtual
sources on the surface cancel inside the volume. It does not say that the total
field inside the volume is zero. The field in the interior is given by the solution to
the wave equation for the interior with boundary conditions and total field
specified on the surface of the scatterer.

The next step is to expand the Green's function, the incident field, and the
scattered field in terms of basis sets whose coefficients can be related through
the boundary conditions on the surface of the scatterer. Waterman chose the
partial wave solutions of the scalar Helmholtz equation, V*¥ +k2¥ =0, in
spherical coordinates. (He also considered cylindrical coordinates.) In this case,
the basis set is given by



Vomnll,0)= ) 28Ok, )2, 6,6)

where: h") are spherical Hankel functions of the first kind of order n, ¥?, are
spherical harmonics, p is an index with two values (even or odd) indicating the
parity of the spherical harmonic, and y,,, is a constant given by

, _{ (2n+1) form=0}

22n+1)n-m)/(n+m) form=0
The spherical harmonics are given by

’ 3 cos(mgp)P" (cos@) for p=even
1n(0.9)= {sin (mg)Pm(cos8) forp = odd }

where P are the associated Legendre polynomials. We choose a coordinate
system with an origin inside the scattering object. Since there are no sources
within the scattering object, we expand the incident field in terms of regular wave
functions (Rey, ), i., €. wave functions that do not have singularities at the
origin. For spherical coordinates the regular wave functions are

Rew, ., lk,r)=72 7, )2, (6,9)
The incident field is then
¥' =) a,Rey,

in which we have collapsed the multiple indices (p, m, n) to a single index, n.
Expansions for plane waves and point sources in homogeneous media are
available for spherical and cylindrical coordinate systems.



The Green'’s function for free space may be expanded in terms of the
eigenfunctions as®

g(kPIr - r'[): ik, ZW" (kl,r> )Rez//n (kpr<)

where: r_ and r, refer to the lesser and greater of rand r’. If we consider the
region outside a sphere enclosing the scattering object, express the scattered
field as the expansion

¥ =3 fv.,

use the eigenfunction expansion for the Green'’s function, and note that r'>r, then
Eq. (1) becomes

ik
R P e I

Similarly, for a region inside a sphere contained within the scattering object, Eq.
(2) becomes

ik
a, = _14_,; doﬂ'[‘i’+(r')V!//n(kpr')"/’n(kpr,)v+\y(r')] “)

To proceed further, we need to consider the boundary conditions on the
scattering object. The boundary conditions relate the total field to its gradient on
the surface of the object. We will consider two boundary conditions: the
Neumann boundary condition (n- V+‘I’ =0), and a penetrable boundary condition
having continuous pressure and normal component of velocity. Expanding the
total field in.a complete set of functions allows us to solve Eqs 3 and 4 can then
for a, and f,. The matrix relating them is the T-matrix.

For the Neumann boundary condition, we choose to expand the field on the
surface of the object in terms of the regular eigenfunctions, which we assume
forms a complete set on the surface of the object, as

¥, =3 a,Rey,



Substituting into Egs. 3 and 4 yields the following two equations in matrix and
vector notation.

a=iQ"a )

f=iReQ")a (6
The matrix Q is given by

Qu. = %J.daﬁ -V((//m (kpr’))Re v, (kpr')

ReQ,., = Z—;J.daﬁ .V(Re v, (kpr'))Re v, (kpr’)

Eliminating « from Egs. 5 and 6 yields the T matrix

f=Ta

where

T=-Re[Q"JQ")"

The next example is the usual acoustic boundary conditions on the surface of the
scattering object—continuity of pressure and the normal component of the
velocity. Primes will denote quantities in the interior of the object. The boundary
conditions on the surface are

BV, ¥=h.V_¥

pY, =p'¥_

Assuming the interior to be homogeneous, the wavefunctions {Re ‘I’,,(k;r)} form a
complete set and the field in the interior can be expanded as

Y= BRey,k;r)



Using the boundary conditions to express ¥, in terms of ¥_, the eigenfunction
expansion of ¥_, and eliminating the coefficient vector g results in the following
expression for the Q matrix that defines the T-matrix.

. = i [ e .- STrev, e,
n p

Attenuation can be included by making &, complex.

The final step is the evaluation of the infinite size T-matrix. This can be done by
solving for the T matrix of rank n and then increasing n until the matrix elements
converge. Reference 10 discusses more numerically efficient approaches.

The advantages of the T-matrix over other approaches to scattering can be seen
from the examples above. The equations forQ, and hence the T-matrix depend
only on the size and shape of the scatterer and not on the incident field. Once
evaluated, the T-matrix can be used to find the scattered field produced by any
incoming field. Another advantage is that the methodology is not restricted to
objects of a certain shape. The integral involved is a surface integral. Once an
integration algorithm is developed, it can be applied to any surface. Unlike the
eigenfunction expansion method, the T-matrix is not restricted to objects of a
particular shape having the symmetry of the coordinate system.

B. Elastic wave scattering

The T-matrix for elastic wave scattering is much more complicated than that for
acoustic scattering. The basic reason for this is that the basis functions become
a set of vectors, rather than a single scalar, and the Green’s function becomes a
tensor quantity. For our discussion below we follow the presentation in Ref. 14.

We consider an infinite, homogeneous, isotropic medium of density p and Lamé
parameters A and p. The embedded scatterer has different properties p1, A4, and
p1. The only condition on the surface of the scatterer is that it be smooth, having
a normal vector that changes continuously over the surface. The geometry is still
that of Fig. 1. The incident wave is time harmonic with frequency o and time
dependence ¢“"*). The vector displacement field u(r) is made up of the incident
displacement u’(r) and the scattered displacement u’(r) where r is the position
vector of an observation point. The equation of motion is

V-T+po’u=0 (7)



where T is the stress tensor, which is defined in terms of the displacement as

T=MAV-u+u(Vu+uv)

I is the identity tensor. The traction t is givenby t=h.-T.

The first step in the derivation of the T-matrix for elastic wave scattering is to
obtain integral equations similar to Egs. 1 and 2. These integral equations relate
the incident and scattered field to the integral over the surface of the scatterer.
We begin by defining the Green'’s tensor G and a Green'’s stress tensor S as
being related to a point source at r’. The Green’s tensor is the solution to

V-S+p0*G=-16(-r") (8)
where § is the stress tensor (rank 3) defined in terms of the Green'’s tensor
§=iv-G+u(vG + V)

In indicial notation, the last term in the definition of S is defined as 0,G, +0,G,
where 0, =9/ox, and i, j, and k refer to the components of the position vector.

The solution of these two equations is the Green'’s tensor given by®>®

s 648l -r1)-20,[slb, I —r1)- gle.fr - r)]

U

47rpa)

Where: g is the scalar Green’s function defined above, k2 = pw® /(A +24) is the
square of the compressional wavenumber, and ? = pw®/u is the square of the
shear wavenumber.

The integral equation relating the displacement field to the field on the surface of
the scatterer is obtained from Egs. 7 and 8. We apply the divergence theorem to
Eq. 7 postmultiplied by G and Eq. 8 premultiplied by u to obtain

u(r):ui(r)+jda{u-ﬁ-§—ﬁ-T-(§} forroutsidec  (9)

0=u*(r)+jda{u-ﬁ-§—ﬁ-"l" G{ forrinsidec  (10)

10



We note that the quantities inside the integrals depend on both r and r’ where
r’' is a point on the surface and that do is the area element at r’.

The next step in obtaining the T-matrix is to define the basis functions we will use
to expand the field quantities. In three dimensions the displacement vector can
be written as the sum of three vectors derived from scalar potentials as

u(r)=VP+k,V x (rQ)+V xV x(rS)

where: compressional waves are described by the potential P and shear waves
by the potentials 0 and §. In analogy to this equation there are three sets of
basis functions

(kp [k, )% ¢ nV[hn (k pr)Pn"’ (cos 0)cosm(p] p=even
(kp [k, Yie nV[hn (k pr)P,,'" (cos 0)cosm(p] p=odd

By () = {

k.n,V x [rh,, (kr)P" (cos@)cosm(p] p=even
k.n,V x [rhn (kr)P" (cos9)cosm¢] p=odd

7 o () = {

~ 1 -
anm(r) = k_-V X l//pnm (l')

s

Arrows over quantities in the above equations indicate that they are vectors. The
constants ¢, and 7, are give by

P @:}M}

" Ax(n+m)

I

m,

(2n+1)n-m)! }

_8" 47m(n + IXn + m)!

where ¢, =1 and ¢, =2 (n>0) is the Neumann factor. Basis functions that are
regular at the origin are obtained by replacing A, with j .

11



The quantities appearing in Egs. 9 and 10 can now be expanded in terms of the
basis functions.

uf(r): Z[Apnm Re&pnm (r)+Bpnm Re !/-;pnm (r)+Cpnm Re anm (r)]

pnm

)= 2| R €)1 By BT 647 R )]

pnm

66.r)= e 2k € IR 6147 IR 6.4 Z IR )

pnm

The equation for é(r,r') follows from the expansion of the scalar Green's
functions in terms of the basis sets in the expression for G, given above.

The integral equation for points inside a sphere within the scattering volume (Eq.
9) becomes, noting that » <r’,

Z [Apnm Re Jpnm (r)+ Bpnm Re ./-;pnm (r)+ Cpnm Re /?pnm (r)] = (1 1)

-3 [ao i) -8 er)- - T6)-E )

pnm

where the subscripts on the Green’s tensor and Green's stress tensor denote
terms in their expansions for r <7’ given below.

Ge.r) = S k[ (RED, () + 7 )R 1 () 7 )R 70 )]
(pw) pnm

s(w):(,j'—’a‘;);{zike&,,nm(r)v'-a,,n,,,(r')+u[v'ﬁ,,,,m(ma,,,,m«')v']aea,,m(r)}

i ’ - ’ - A\vii 7/ 'y ! A % 74
' (p’fiz 777 1) 7 IV IR ) 07 )+ F o IV [RE 2, )
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Applying the same procedure to Eq. 10, and recalling that » <7’ for this case,
yields the following equation for the expansion coefficients of the scattered field.

S b s O+ B €47 o o )] a2)
-3 [doble) -8, ) T € e}

pnm

where G (r’,r) is obtained by interchanging r and r’ in the above expression

pnm

for G, (r,r") and

§r) =TV R ()7, )+ 4l ReF ()4 Re, W] 5 6)

(p )2
(p )2 2, {[vry 7 )+ R, W), ()

+ UV Re Z 1 ()4 Re £ o )V [ 1)}

Equations 11 and 12 do not reduce to the simple relationship between an
expansion coefficient and a surface integral, as was the case for acoustic
scattering (Egs. 5 and 6). To obtain a similar result for elastic scattering, we
multiply Eq. 11 successively by Reg,,,(r). Rey,,,(r), and ReZ,,.. (), integrate
over all angles, use the orthogonality relations of spherical harmonics, and
perform a little algebra to obtain

e == 5 [ 0) 8 G196+ 1]

~4-T()- 4, )

k [ AN ’ - ’ - 7! Aoy e '
Bpnm = _ﬁ. da{u(r )'n' [IUV (//pmn(r )+:u'//pnm(r )V ]_n' T(l' )"//pnm(r )

k 3 ~ y - ’ - 4 ! A - 14 - ’
Cpnm = _____13_ dO’{.l(r,)'n ’ [luv /anm(r )+:uanm(r )V ]_n ) T(r ) lpnm(r )}

(pw)’ -

Equation 12 yields similar expressions, with the basis functions replaced by
regular basis functions, for the coefficients of the scattered field.

13



As was the case for acoustic scattering, we need to employ the boundary
conditions on the scatterer to proceed further. As an example, we consider a
cavity with stress vanishing on the surface of the scatterer. The boundary
condition is A-T(')=0 for r' on o. We expand the surface displacement in
terms of the regular basis set as

u(r’): z [aq,.]. Reﬁqv. (r’)+ b, Ret/7q,.j (r’)+ c,; Re qu,-(r')]

qij

in which we have used different subscripts to identify the basis functions and
coefficients.  After substituting this equation into the expressions for the
coefficients of the incident and scattered fields we obtain two matrix equations.
One relating the incident wave coefficients to the coefficients of the surface field
and the other relating the scattered wave coefficients to the surface field
coefficients.

[a,,] [Rel0")2, Rel0®), Relo®), la,
B |=-1|Re(0? )0, Rel0®)0, Rel0® )L, | B,
¥ o Re(0” )2, Rel0®)", RE(Q*), | ¢

Each vector component in these equations is an infinite component vector itself.
Each matrix element is an infinite dimension matrix. The QY for the cavity
problem are given by these integrals over the surface of the scattering object

0" = (o [ R €8 VG, 64 19 G616, 6
(Q21 )::m = (::;)2 IdoReﬁqb.(r')-ﬁ‘[V'anm(r')‘* anm(r')v’]
") = i [ [ e )+ 2V
o)

14



The matrix elements (0*?) are obtained by replacing Reg,, (') with Red,, (')
and (0**) are obtained by replacing Red,, (') with Rez,,(r"). Rel gﬁ’,’m) is

obtained by replacing the basis vectors by the corresponding regular basis
vectors.

The T-matrix is obtained by solving the two matrix equations above for the
coefficients of the scattered wave in terms of the coefficients of the incident ware.

O] (O S TS 2o [ 4,
by | = S 2o (72 ) | By
L N e S () W ) |

The elements of the T-matrix are defined in terms of Q by the same equation as
in the scalar case

T=-Re(Q")Q")"

As in the acoustic scattering case, the T-matrix depends only on the geometry
and boundary conditions of the scatterer, not on the properties of the incident
field. More complicated boundary conditions, such as those describing an elastic
scatterer, are also discussed in Ref. 14.

C. Multiple Scattering

The T-matrix approach lends itself to describing multiple scattering--the
interaction of the scattered field with another obstacle. The key to treating
multiple scattering is the ability to translate the origin of coordinates of the
spherical basis functions. This allows one to calculate the scattering from each
individual object as outlined above and then to translate the results to a common
coordinate system. For multiple scattering, the scattered field of one object
becomes the incident field at another. In this section, we follow Ref. 19 in
discussing the application of the T-matrix to multiple scattering.

1. Two Scatterers

Figure 2 shows the geometry for two scatterers Sy and S,. There is an origin of
coordinates O outside the scatterers and points O and O, located by the
vectors a, and a, that serve as local origins of coordinate systems within the two
scatterers. The vectors r; and r, are points on the surfaces o1 and o, of the

15



scatterers relative to the O coordinate system while r and r, are points on the
surfaces relative to the coordinate systems within each scatterer. The vectors r
are observation points relative to the O system while r, and r, are observation
points relative to the Oy and O, coordinate systems. O4 and O, are chosen so
that r/ and r, are continuous functions of spherical coordinates in their
respective coordinate systems. The vectors n, and n, are outward normal
vectors at the surface of each scatterer.

Figure 2. Geometry for a two scatterers.

In analogy with the single scatterer, we have two integral equations for the
acoustic field one for r outside Sy and S,

()= [doi[¥, @Wa(klr-r) -2(k DV, ¥6)] a3

§;+85,

and the other for r inside S;or S,

\Pi(r) - _i J‘dO'fl 0[\P+(r’)Vg( kplr -—r'l) —g( kpll‘ —_ l"l)V_i_‘P(r,)] (14)

S5+8,

In Egs. 13 and 14 we assumed that there are no sources inside a sphere
centered at O and enclosing both scatterers. As for the acoustic scatterer above,
we expand the incident field inside this sphere as

¥'(E)=) aRey, ) (15
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To proceed we will want to expand the surface fields in Egs. 13 and 14 in terms
of regular eigenfunctions centered at Os and O,. We will also need to express
the expansion for ¥’ in terms of coordinates centered at Oy and O,. As an
example, consider the case for r inside S;. We use the fact that r—r/ =r, -1/
to expand the Green'’s function within a sphere within S; centered at 04. We also
restrict r to those points inside Sy for which r, <77 where " is the smallest
value of r” on the surface 1. We can now identify . and 7, in the expansion of
the Green’s function to obtain

k - —1k ZW" Ret//n ) (16)

We also need to expand the Green'’s function in the integral over o,. This is
accomplished by noting that the argument of this Green’s function (r - r,) can be
written as r,-[r/-(a,-a,)]. For 7 <r%, we have r <|r’-(a, a2)|. The
Green'’s function is

g(kp|r_r2’|):ikpz‘//n[kp(r;_(al —az))]Re'/’n(kprl) an

To carry out the integral over oy we need the translation properties of v, and
Rey, to convert the arguments to the variables of integration. For Rey,, noting
that r =r, +a,, the translation is given by a summation over regular functions,

ReWn(rl +al): ZRnn’(al )Re'//n’(rl) (18)

The translation properties of y, is also given in terms of the regular
eigenfunctions as

'//n[rz”'"(al _az)]: Zrnn'(—al +az)Re'//n'(r2”) (19)

This expansion is valid only for |a, —a,|<7,. For the expansion inside S; to be
valid we also require |a, —a,|<r". These two conditions introduce a constraint
on the configuration of scatterers that can be satisfied if the spheres defined by

n” and r, do not overlap. The properties of the translation matrices R, and
T, are given in Ref. 19.
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Equations 18 and 19 can now be used in Egs. 13 and 14 to relate the incident
and scattered fields to the fields on the surface of the scatterers. The expansion
coefficients of the surface fields are a) where i=12 denotes the scattering
object. The Q matrices for each scattering object, as defined above for acoustic
scattering, will also appear in the results. A superscript will identify the matrix for
each scattering object as Q. The superscript T denotes the transpose of a
matrix. Equations 13 and 14 then yield the following equations in matrix notation.
For r =r, +a, inside S with r,, <r,

1min ?

R’ (a,)a=iQ'a' +il'(~a, +a,)ReQa? (20)
and for r =r, +a, inside Sy with r,, <r,, .,
R’ (a,)a=iT(~a, +a,)ReQ'a' +iQ%a’ (21)

For the region outside the scatterer we obtain an equation for the scattered field
expansion coefficients.

f =-iR(a,)ReQ'a’ —iR(a, )ReQ’a’ (22)

Equations 19-21 can be used to eliminate the expansion coefficients of the field
on the surface of the scatterers and obtain the T-matrix for the two scatterers
T(12). The T-matrices of the individual scatterers, T(;)=-ReQ'(Q')", also
appear in expression for the total T-matrix. The T-matrix for two scatters is

T(,2)= R RTO0 -T(-a, +2, )T (2, +a IO @3)
X [1 +r(—a1 +aZ)r(2)R(al "az)]R(" a, )}
+R, NT@M -T( 8, +2, IO (-3, +2,)TQ)
X [1 + F(— a, +a, )T(I)R(az —a, )IR(_ az)}

Examination of Eq. 23 shows that it treats the two scatterers in a symmetric way.
The introduction of more than one scatterer does not require more complicated
surface integrals than the single scatterer case. We still need only calculate
the Q" matrices of the individual scatterers. Equation 23 combines them into the
T-matrix for 2 scatterers.
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It is informative to examine some of the individual terms arising from Eq. 23. For
T(1) - 0 we recover the single scatter result T(1,2)— R(a, JT()R(~a,) which is
the single scatter result translated from an origin inside the scattering object to
one outside the object. Formally expanding the inverses in Eq. 23 yields a series
that has a natural interpretation in terms of multiple scattering. The first few of
these terms are interpreted in Table 1.

Expansion term Interpretation
T(1) Single scatter from 1
T(2) Single scatter from 2

T(2)I'T(1) Scatter from 1, propagation from 1 to 2,
scatter from 2
T(I'T(2) Scatter from 2, propagation from 2 to 1,
scatter from 1
T(MITE)IT(1) | Scatter from 1, propagation from 1 to 2,
scatter from 2, propagation from 2 to 1,
scatter from 1
TE)IT(NI'TER) | Scatter from 2, propagation from 2 to 1,
scatter from 1, propagation from 1 to 2,
scatter from 2

Table 1. Interpretation of terms in the expansion of T(1,2)

This approach to multiple scattering is very powerful. It is a full physics approach
that includes effects of energy trapping and resonances in the configuration of
the scatterers.

2. N Scatterers

While the approach for 2 scatterers that we used above can be generalized to
treat N scatterers, the resulting iterative procedures outlined in Refs. 19 and 22
are complex. Reference 23 provides a different approach that is uses the
“effective field” concept to develop a concise and elegant solution for the T-matrix
for N scatterers. The incident field at each scatterer is expanded as

\P}(r—dj):ZRet//n(r—dj)a,{
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The scattered field is expanded as
¥ (r)= Z‘P ZZW

We define the effective field incident on each scatterer as the field made up of
the incident field and the fields scattered from all other obstacles. Since this is
the field exterior to the scatterer under consideration, it can be expanded in terms
of regular functions centered on the scatterer. The effective field incident upon
the j” scatterer is then

Y -d, )=V Z\p
J“]
=ZRey/,,(r—dj c]

The expansion coefficients £ of the field scattered by the j* object is given by
the T-matrix for that scatterer as

5= 19 (24)

Expanding the expression for the effective field and using the translation matrices
defined above yields

c; =a1+222r d -d, ,f’n)c,{.

J *J
In matrix notation this equation can be written as

c=a+227¢ (25)
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where
[ ¢! ] ra s xR 0
c? a’ o T® 0
cC= ’a = " ’7 =
M| |aY 0 0 ™|
and

[ 0 Iﬂ(_ (d1 —dz)) r(_ (dl —dz)) r(_ (d1 _dN ))-
r(dl "dz) 0 r(" (dz _ds)) I-'(— (dz _dN))
R = r(dl "ds) r(dz _d3) 0 r(' (d3 "dN))

r6,-d,) T@-d,) T@-d,) .. 0

Using the matrix analog of Eq. 24, ¢ =27 "'f, in Eq. 25 yields the multiple-scatter
T-matrix T relating the incident and scattered fields

f =TV a
where

™ =7(1-27)"

Expanding the inverse in T™ produces terms corresponding to increasing orders
of multiple scattering

T =7 +7RT +TRTRT +--

Each 77 matrix represents scattering by each of the N obstacles while each 2
matrix distributes the scattered fields among the N objects. The poles of T

correspond to scattering resonances of the N body system.
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D. Layered Scatterer

The T-matrix approach has been extended to treat scattering from a structured
object, such as an object made up of layers of different materials, an object with
embedded scattering objects, or an object made up of non-enclosing parts. The
theoretical approach we present here treats scattering from a layered object and
follows the work in Ref. 24. Figure 3 shows the scattering geometry. There is a
single object with two layers. A subscript i, i =1,2, will be used to identify
quantities in the two layers of the scatterer. A subscript O will denote the
properties of the background medium outside the scatterers.

Region 0

Figure 3. Geometry for a layered scatterer.

We begin by applying Huygen’s principle to the region outside region 1 and using
the acoustic boundary conditions of continuity of pressure and velocity to relate
the field in the exterior (Region 0) to the interior (Region 1). The incident and
scattered fields are expressed as

¥ (kor) = zan Rey, (ko)

¥ (k)= 1w, )
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In the region outside o, and inside o4 the field is made up of both regular (Re)
and outgoing (Out) solutions and is written as

¥ (klr) = Z {ayl. Rey, (kl r)+ ﬂrlrl//n (klr)

The integral equations yield two equations relating the coefficients of the incident
and scattered fields to the coefficients of the field in Region 1

7, =1 {0h(Re,Re)a} + 0L, (Re, Out)p )

a,= iz {Q,]m, (Out,Re)a), + Q.. (Out,Out)s.,

where

Qtlm' (Rea Re) = kO J.dO'ﬁ . {& [V Re V. (kOr)}{e Vo (kl r)— Re l//n (kOr)V Re Wn' (klr)]}
Po

oy

The first argument (Re or Out) in O, . signifies taking Rey, or v, as the wave
functions with argument £,r in the integral; the second argument (Re or Out)
signifies taking Rey, or v, as the wave functions with argument k,r.

Next, we apply Huygen’s principle to the volume between o1 and c,. Expressing
the field inside o, as

¥ (k,r)= Zaf Rey, (k,r)

Using the acoustic boundary conditions on surface o, and evaluating the
integrals yields two equations relating a,, a?, and ..

-ia, = ZQ,fn, (Out,Re)a?
iB = ZQ,f,,. (Re,Re)a>
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Written in vector form, our results for the two layer scatterer are

a= i{Ql(Out,Re)cx' +Q'(Out, Out)p'
f= —i{Q‘(Re,Re)a‘ +Q'(Re, Out)Bl}
o' =iQ*(Out,Re)a’

B' =iQ*(Re,Re)a’

Solving these for the relation between a and f yields the T-matrix for a two-
layered scatterer

T = {T‘ - Q' (Re, Out)T?[Q' (Out,Re)[ }{1 +Q' (Out, 0ut)1*[Q' (Out,Re)[” }l
where
T' =—Q'(Re,Re)[Q’ (Out,Re)]”

is the T-matrix of a non-layered scatterer bounded by surface o, and having the
material properties of Region i.

Reference 24 give a recursive approach for calculating the T-matrix of an N layer
scatterer. The T-matrix for a scatterer formed by removing the first j layers of an
N layer scatterer layers T’*" is given by

T/ =T - Q" (Re, Out)T/**~V [Q"+l (Out, Re)]'1
x {1+ Q7" (Out, Out )T+~ [Qm (Out, Re)]_] }

which can be constructed by working from the innermost layer out to the surface.
E. Inhomogeneous Scatterer

Scattering from an object with continuously varying properties can be treated
within the T-matrix formalism, but general results cannot be given. The difficulty
is that the fields in the interior of the object cannot be expanded in terms of
spherical wave functions since they may not be solutions to the wave equation
for the interior of the scattering object®®. A basis set must be defined for each
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type of inhomogeneity. Once the basis set is known, the rest of the T-matrix
formalism follows.

F. Scattering from highly non-spherical shapes

The development of T-matrix theory that we have presented uses spherical
coordinates and basis functions and works well for scattering objects that are
nearly spherical. There is, however, no fundamental restriction to treating objects
with more complicated shapes. The theory itself places minimal restrictions on
the shape of the scatterer. The surface of the scatterer must be continuous and
described by a single valued function of spherical coordinates. Scattering from
nearly cylindrical objects can be treated using cylindrical coordinates and basis
functions. We will not discuss cylindrical coordinates since the theory follows
that for spherical coordinates very closely. In this section we discuss scattering
from highly non-spherical objects such as prolate and oblate spheroids of high
aspect ratio.

The results presented above can be used directly, provided we know how to
describe the surface element in the integral equations for the Q matrix. For a
spheroidal (prolate or oblate) scatterer, the surface element is®

where: a and b are the semi-major and semi-minor axes of the spheroid, and

cos’6@ sin’@ B
r(9)=( 7 + e J

For a prolate spheroid (cigar shape) a > b ; for an oblate spheroid (pancake
shape) a < b; and for a sphere, a=5.

For objects with large aspect ratios (a >> b or a << b) there are practical
problems in applying the T-matrix approach. Larger numbers of terms in the
approximation of the infinite dimensional Q matrix are needed for convergence
and the matrices become ill conditioned. Techniques for dealing with the ill
conditioned matrix problem have been developed'®® but will not be discussed
here.
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Reference 29 discusses a fundamentally different approach to applying the T-
matrix formalism to large aspect ratio scatterers. The idea is to use a coordinate
system that closely approximates the shape of the scatterer to reduce the
number of terms needed to approximate the matrices and reduce the severity of
the ill conditioned matrix problem. This approach is novel since it is well known
that the vector wave equation is separable only in Cartesian, cylindrical, and
spherical coordinates.® An analytic Green'’s tensor, which is used to construct
the T-matrix, cannot be formulated in other coordinate systems since the vector
basis functions are not orthogonal. Reference 29 avoids this problem by
‘developing a Huygen's principle based on Betti's third identity*' that does not
require the Green'’s tensor. They use spheroidal vector basis functions that
contain the spheroidal counterparts to the spherical Hankel functions and
spherical harmonics. This approach is outlined below.

Betti's identity states that if u and v are solutions to the time independent vector
Helmholtz equation in the volume, and T(u) and T(v) are the stress tensors
associated with u and v, then

j doh - [T() v-T()-u]=0

where the integral is over the surface bounding a volume and n is a unit vector
pointing out of the volume and normal to the surface.

Huygen'’s principle is obtained by using expressions for u and v which describe
the scattering process. We bound the scattering object on the outside by the
smallest spheroid S. containing the scatterer and on the inside by the largest
spheroid S. contained by the scatterer. Using the spheroidal basis functions
(given in Ref. 29) we expand the incident wave u’, the scattered wave u*, and
the wave inside S_ u” as

u' = Zan Rey,

w'= > A
W = Zan Rey,

where y, are the spheroidal vector basis functions. The superscript 0 indicates
that the properties of the scatterer rather than the background medium are used.
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For the surface bounded by S, the surface of the scattering object, and S., we
have

j do - [T()-v-T()-u]= j doi - [T()- v-T()-u]

On S. we have

Za Rey, + Zf 78
1= t(Rewn)+th(V/,.

where t=i-T is the traction. Choosing v =y, and v = Rey, and substituting
above results into the two equations yields

-1y 0,0, = [dolt, ()7, ~t(7, ) u,]
n s
iy 0ty = j' dolt, () Rey, —t(Re 7, )-u, ]
n' s

where t, and t_ are the traction and displacement on outside surface of the
scatterer. The matrix elements O, are related to the orthogonality and
normalization of the spheroidal harmonics.

We now apply the boundary conditions for two solids in contact at the surface of
the scatterer:t, =t_ and u, =u_. Replacing the quantities on the outside of the
scatterer with those on the inside in the equations for the incident and scattered
wave coefficients results in

3 Out = [dole )7, 47.)w ]
i Onfy = [ dolt (1) Red, ~tRe, )-u.]
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We next expand the surface traction and displacement in term of the spheroidal
basis functions for the interior of the scatterer.

u = an Rey!
t_ = ant(Rel/'/',‘f)

Substituting these expansions into the integral equations and using

R, = [dolt(Re,) 7, ~4(7,) Rei, ]
S

ReRnn’ = J-dO'[t(Re '/7n' ) Re ‘/7n - t(Re V-}n ) Re '/-;n']
N

we find

=i 0,,8, =Y Ryb,

Since the matrix O is symmetric, we arrive at the T-matrix for a spheroidal
system

T =-ReQ(Q)"
Q=0"R
ReQ=0"ReR

The T-matrix for the spheroidal system differs from that for a spherical system by
the inclusion of the O matrices. The non-diagonal nature of O arises from the
mode coupling in geometries other than spherical.
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G. Buried scatterers

For application to scattering from objects buried in the seafloor, we need to know
how to use the T-matrix for a scatterer buried in a half-space. In this section we
follow the presentation given in Ref. 33.

3. Preliminaries

Figure 4 shows the geometry we will consider. There are three acoustic media in
the volumes Vj, V4, and V.. The media have densities p;, velocities ¢;, and wave
functions ¥, where i=1, 2, and 3 indicate the media. The surface oy encloses the
scatterer located below the two-dimensional surface o, separating volumes Vy
and V4. The surface oo has an average depth of z = 0 and is confined between
two planes with constant z coordinates indicated by the dashed lines. The point
P is the source location in volume Vo.

P
VOy p07 CO
o A
n,

W

22 oo
n,
Vly P1: C1
o,

Figure 4. Geometry for a buried scatterer.

We assume that the wave field is harmonic and generated by a point source at P
in Vo. The wave fields in each of the media satisfy

(V2 +r2)¥ =0, r=123

where &, = w/c, is the wavenumber of medium r.
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We begin by considering the integral equations for a surface bounded by a finite
part of oo and half of a sphere into the lower half plane. Letting the radius of the
sphere go to infinity we obtain:

)V"I’O+ (r')] forrin V,
(26)

)— g(ko|r —r'

26)= 1)+ [y [8 (Wl

0="!(r)+ Ido" n,- [‘I’o‘” (r’)V’g(kolr - r’|)—— g(kolr - r’|)V"I’J (r')] for r outside V,

where ¥, is the field on oo as it is approached from above. For this problem we
will use an expansion of the free space Green’s function in terms of plane wave
traveling away from o instead of the spherical wave expansion used above. By
restricting the region of V, that we consider to those r for which z > z_and the
region outside of Vy to those r for which z < z_, we can use the following
expansion for the Green’s function in both integrals.

g(k0 r—r’ -

2z
Ik . ikg(r-r’
)=—2 Jld¢jd6 sin(@)e™o )
0,

k, =k, /k, Where: k, = k, (sin 6 cosg,sin 6 sin ¢, cos#), 6 and ¢ are the polar and
azimuthal angles giving the spherical coordinates of the unit vector k, =k, /k, .
The integration is over contour C. for z > z_ (propagation upward) and over C. for
z < z_ (propagation downward). The contours are shown in Fig. 5.

AImo /Mme :

~ 4
< 7[/2 Reg

Cs

Figure 5. Integration contours.
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4. Integral Equations for the Surface oy

In this section we obtain integral equations linking the incident field and the field
scattered from the plane surface. Using Eq. 26 for r in Vy and the expansion of
the Green'’s function in terms of plane waves, the scattered field in the region
above z_ can be written as

2z
¥ ()= _[ dg, J' a8, f(k,)e™" sin 6,
0 c,

where

f(ko);:_; [dos i[5 W le)- e vas ()] koeC, @)

We next use Eq. 26 for r outside V, to obtain an expression linking the incident
field to the fields on the surface. The incident field emanating from a point
source located at r, in Vo above z_ is expressed first in terms of spherical wave
basis functions as

%)= av. -,

where the subscript n refers to the subscript set pnm used in previous sections.
For z>z,and z <z, the spherical wave functions can be expanded in terms of
plane waves as®

2z
v, (kr)= Ln jd¢‘|.d0 Y, (ﬁ)e"‘" sin @
27i A

where the contour is over C. for z >0 and over C.for z<0. For z < z, the
expression for the incident field in terms of the plane wave expansion is
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2z
¥ ()= I dg, J' d6, alk,)e™" sin 6,
0 C_
We now use Eq. 26 for r outside Vyto obtain
alk,)= —%&-Idoé n,- [‘I’J (r')V'(e""‘“’l)—e""“""V"I’O+ (r’)] k,cC. (28
T

The only difference in the integrals for f(k,) and a(k, ) is that the plane wave
expansions refer to upward propagating waves (k, € C, ) for f (ko) and
downward propagating waves (k, € C_) for a(k, ).

5. Surface Fields

We will now use the integral equations based on the surface bounding medium 1
to remove the surface fields from the expressions for f(k, ) and a(k,). The
surfaces oo and o, enclose V;. Since there are no sources in Vi, the integral
equations for this surface are

)V"I’,‘ (r’)] forrin 'V,

¥,()=-[do’ i, - [¥ G W'glls e ) - gk

+ jdo" n - [lP1+ (r')v'g(kl lr - r'I)—- g(kl Ir - l"I)V’\PI‘L (r')]
! (29)
0= —jda’ n, - [‘I’l‘ (r’)V'g(k1 Ir - r’|)— g(k1 Ir— r'l)V"Pl’ (r')] forrin V, or V,

+ jdo" n - [‘I’]+ (r')V'g(k1 Ir—r’

41

)~ gl —r e ()]

The boundary conditions on o and o1 will be used to relate the surface fields ¥
to the surface fields'¥; and ¥, . To eliminate ¥, we use two forms of Eq. 29,
one for r in Vp and the other for r in V..

For r in Vo, the T-matrix based on spherical waves gives the effect of the
scatterer bounded by 1. The appropriate Green'’s function for the integral over
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o1 is given by the expansion in spherical basis functions as used in the previous
sections,

g(kl Ir - r'l) =ik, ZRC vV, (k1r<)Wn (k1r>)

To enable a consistent definition of r_and r, for the integral over o1, we restrict r
to the exterior of a sphere with a center inside 61 and enclosing o;. Then for the
integral over the surface of o1, we have r, =rand r_ =r’'. Equation 29 for r in
Vo is then

Ia’o" n, - [‘I’,‘ (r’)V’g(k, |r - r’l)— g(k1 ]r - r'|)V"I’,’ (r')] (30)
=ik, v, (er)[ o i, - [ W Rew, (6r') - Rew, (r Wy ()

Similarly, by restricting r to the interior of a sphere with a center inside o, and
enclosed by 61 we have r_ =r’and r_ =r. We then have for r in V>

Ve 6 (31
=ity Rey,(er)[ do" i, [# Gy, (e )=y e s )

Ido" n, - [‘I’,_ (r')V’g(k1 Ir— r’|)—g(k1 Ir—r’

We next use the boundary conditions to eliminate ¥;" in the above two
equations. Since we want to describe the scattering object in terms of its T-
matrix, we first expand the surface field inside the scatterer we expand in regular
basis functions and obtain

¥;6)= Y af Rey, (k)
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For the field in volume V4, we use the plane wave expansion containing both
waves propagating both upward and downward. This corresponds to both
integration contours and results in

2r
¥ ()= I dé, j' d6, afk,)e™" sin 6, + I d6, Blk,)e™" sin 6,
0 C_ c,
Using the acoustic boundary conditions on o4, Eq. 30 for r in V, becomes

J‘d¢1[j'd9 a(k,) I(k,,r)sin 6, +J.d9 Bk, )](kl,r)smeJ (32)
= -'Z v,(kr)0,,(Re,Re)a’’

and Eq. 31 for r in V, becomes

j d¢,{ I d6, ak,)I(k,,r)sin 6, + I a6, Bk, )I(kl,r)sme} (33)
—IZ(//n(k r)0,,(Out,Re)a?)

We note that Eqgs. 32 and 33 differ in two ways. First, the arguments of the Q
matrices are different. Second, the field points r are different. For Eq. 32, r is

in Vo while for Eq. 33 r isin Va.

The Q matrices are defined by

0. (Re.Re) = [ o {Rey/n(kr)V Rey, ')~ 2215 Rey, lor WRew, (e )}

oy

0 (OuR)=k [y, o WV Re, )220, s MR, )

L4
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and I(k,r) is given by

I(k,r)= Ido" n, [e"‘"'V'g(k1 r—r)- (V'e""")g(kl Ir - r'|)]

The value of I(k,r) depends on whether k is on contour C. or C. and on
whether r is above or below co. Evaluating I(k,r) yields

ik-r %
I(k,r)= ¢ for ‘f €€, forr above o,
0 forkeC_

I(k,r)= 0 forlf €C, for r below o,
—e™" forkeC._

Using these values for (k,r) Egs. 32 and 33 become

2r
J' dg, I do, fk,) ™" Jsin6, =~y v, (kr)Q,,Re,Re)al?  forrinV, (34)
0 c, nn'

2
Id¢, J‘d¢9l a(kl)(—e"‘"’ )sin 0, = —ian(klr)Qm. (Out,Re)a® forrinV, (35)
0 C. mn’

We now introduce a quantity Q(ko,kl) for scattering of plane waves from the
surface oo that is analogous to the Q matrix for scattering from a bounded
scatterer.

Q(k()’k]): %J‘ddé ﬁo . l:e“i"O"'V'(e—iko-r’)__’/Dzl_vy(e—iko-r'k—iko-r’:l
oy 0

The value of O(k,,k, ) depends on the contour used for k, and k; .

Using the plane wave expansion for ¥, andQ(k,.k, ), Eqs. 27 and 28 for f(k,)
anda(k,) become
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£lc,)=-i [ 6, alk,) Qlio.k,Jsin ), + 6, Alk,) Qlks K, )sin 91} k,€C, 66)

a(ko)zijd¢l (a6, a(kl)Q(ko,kl)sin9,+jd9, ,B(k,)Q(ko,k,)sinal} k,eC. 37

C.

6. T-matrix for the Buried Scatterer

Equations 34 and 35 involve expansions using two different basis sets. The left
side of these equations is an expansion in plane waves while the right sides are
expansions in spherical harmonics. These equations are further manipulated
and used to express the relationship between a(k, ) and g(k,) in terms of the T-
matrix for the scattering object. First we manipulate Eq. 35 into a relationship
based on the spherical wave function basis set. Multiplying each side by the
spherical harmonic Y, (t), integrating over the unit sphere, and using the plane
wave expansion of the spherical wave functions on the unit sphere

27 4
Jul), 6)=— [ o[ a8 e*, F)sing
7Tl
0 0

yields
27
—4zimj (k) _[ dg, I d6, a(k,)Y, (k, )sin 6,
0 C_

2z B
- —iz Jj, (klr)“‘d(pj.dBYm (F) 7, (F)sin .9} 0,,(Out,Re)a?
nn’ 0 0

The quantity in brackets above is the orthogonality integral for spherical
harmonics and is §,,,. Using this we have

2
4ri" Id¢1 J.del a(kl ) Yn (l’;l )Sin 91 = lz an' (OUt’ Re)a'(‘?) (3 8)
o C i
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Equation 34 can be similarly manipulated to give a relationship between plane
wave amplitudes. By considering r on a plane of constant z =z, >z, we can
use the plane wave expansion on contour C. for y, (k,r) and obtain

I ds, I a8, p(k,) (" )sin,

:—zz J‘ ds, J' a6, ¥,(k, )e™" sin 6,0,,(Re, Re)a®

This equation is true provided

Blk,)= Z = Y,k )0,.Re,Re)a®  (39)

Equations 38 and 39 can be further manipulated to introduce the T-matrix of the
buried scatterer. First we solve Eq. 38 for the expansion coefficients of the
spherical wave basis functions by multiplying both sides by the inverse of the Q
matrix to give

> 4zi"[0" (OutRe)],, quﬁ] j a6, alk,)?,(k, )sin 6,

=iy lo" (Out Re)|,,0,, (Out. Re)arf?
Using the fact that
z [Q B (OUt’ Re)]mn an' (Out’ Re) = am,n'
we have
2r
a® = —Z 4ri™ [Q’1 (Out, Re)]mn J.d¢1' jd&,’ alk!)?, (I:{{ )sin 6,
n 0 C_
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Substituting this into Eq. 37 and using the definition of the T-matrix of the
scattering object 7, (1)

7,,0= 30, (Re ROl Out R,

yields the relation between the upward propagating and downward propagating
plane wave amplitudes in V;.

plk,)=2>" i,k )1, (1)Td¢; [ a6y afic)y, i )sine; - (a0)

Equation 40 is the analog to the equation relating the incoming and scattered
spherical wave amplitudes, f = Ta, that we derived above for acoustic scattering.
Here, we have a more complicated equation since we are dealing with plane
wave amplitudes and the spherical wave T-matrix of the scatterer. The spherical
harmonics appearing in Eq. 40 and the integration are related to the
transformations between the plane wave and spherical harmonic representations
of the field.

In symbolic terms we can write the three remaining equations describing
scattering from a buried object, Egs. 36, 37, and 40, as

f= _iQﬁza "iQﬂgﬂ
a= iQaaa+iQaﬁ,6’
p=Ta

In these equations we have expressly identified each of the Q functions as being
different. Formally solving these equations yields

f=-0,;(Q5Q,. + TR, (1+Q,TQ:L) s

When the surface oy is flat, the Q functions can be evaluated in terms of the
reflection coefficient of the surface to give
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f=(R, +TN1-R,T)"a

where: Ry is the reflection coefficient of a wave striking the interface from above
and Ry is the reflection coefficient of a wave striking it from below. The total T
matrix for the buried object is then

T, = (Rm + TXI - RlOT)_]

Noting that R, = -R,,, this equation can be expanded in powers of the T matrix
of the buried object to give the series

Tbur = R01 + (1 _RmRox )l' - (1 - R01R01 )TROIT +eee

Since 1- R, R, =T,T,,, where Ty and Ty are the transmission coefficients of the
interface, we have

T,

bur

=R, +]E)1710T+];)1710TR10T+"'

This expression has a simple physical interpretation. The T matrix of the buried
object is made up of:

1. Areflection from the interface with no interaction with the buried scatterer

2. Transmission through the interface, interaction with the scatterer, and
transmission back through the interface

3. Transmission through the interface, interaction with the scatterer,
reflection from the underside of the interface, interaction with the scatterer,
and transmission back through the interface

4, ...

H. Scattering in a Waveguide

For application to the analysis of scattering in shallow water, we need the theory
of T-Matrix scattering in a waveguide. This is developed in Refs. 35-37. Our
presentation here follows Ref. 37 which presents a compact theory for a
homogenous waveguide that illustrates the basic physics without the
complications of more general waveguide treated in Refs. 35 and 36.

We assume a horizontally stratified medium. The water column is bounded
above by the sea surface and below by a layered seafloor terminated by a half
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space. To develop the basic concepts, we first consider the case where both the
source and scatterer are located in the same layer. After that, we will discuss the
more realistic case where the source and scatterer are in different layers as
would be the case for a source in the water and a scatterer buried in the seafloor.
Cylindrical coordinates (p, z, ¢) with an origin inside the scatterer are used. The
vector p is the position in the x-y plane. A harmonic time dependence (e*) is
assumed.

7. Source and Scatterer in the Same Layer

The source and scatterer are bounded above by the plane z = a and below by
the plane z=-b. The total acoustic field ®,, is written as the sum of a source
component @ and scattered component @

scat *

Qtot = (I)src + q)

scat

Each of the field components is expanded in a multiple-scattering series that
takes into account the interaction with the medium above and below the layer
containing the source and scatterer.

The 4 terms in the sum over j are: the direct path (i=0), the path reflecting once
from the upper boundary (i=7), the path reflecting once from the lower boundary
(1=3), and the path reflecting once from each boundary (i=4). The direct path
term is given by the free-field Green'’s function expanded in terms of upward and
downward propagating plane waves

kiih(z—z,)

i faqd L
@;, =E!1}’1Jo(qlp—p,

where the field point is given by the cylindrical coordinates (p, z, ¢) and the
source position is given by (ps, Zs, ¢s). The positive sign in the exponent applies
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when the field point is above the source position (z>z;) and the negative sign
when the field point is below the source position (z>z5). The horizontal
component of the wave vector k is ¢ and the vertical component is

h(g)= (k2 = qz)"z. For simplicity in keeping track of the signs in the exponents,
we assume that z>zs>0 in the following.

For the i=1 term, we have plane waves propagating downward from the source
(z=zs) to the boundary (z=-b) followed by a reflection and propagation from z=-b
to the field point.

[ ih(~b-z, )Veih(z+b)]

<1>82= j Jolgp-p,))
0

where V(g) is the plane wave reflection coefficient of the lower boundary, which
will depend on ¢ in the general case.

Similarly we have

[ ]

0

q)g4 :&%Iq_;ll_q_‘lo(qlp__p:|)[e—ih(-b—z_,)Veih(a+b)Ue—ih(z—a)]

where U(q) is the plane wave reflection coefficient of the lower boundary of the
layer. The i=4 component is the multipath propagating downward at both the
source and field point and having one interaction with each boundary. These
four terms contain the direct path and three of the four multipaths having one
interaction with each boundary. The fourth multipath (propagating upward from
the source and arriving from below at the field point and interacting once with
each boundary) is in the j=1 part of the sum.

The j=1 terms in the sum differ from the j=0 terms by an additional scattering
from both the upper and lower boundaries. This is accomplished by multiplying
the j=0 terms by a factor UV exp(2ih(a +5)). Note that for the i=1 term, the
muitiplication of the direct path by this factor produces the fourth multipath that
was missing from the j=0 sum.
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The terms for any j are obtained from the j=0 terms by multiplying by the factor
[UV exp(2in{a +B))} . The resulting sum for the source field is

Lm__‘l 41
@, = f - Jo(glp—p,)) (41)

0

4
N Z(er (z-2, + Vexh 2+2,+2b) +Ue —ih(z+z,-2a) +UVe ~ih(z~z,~2(a+b )) (UVeZIh a+b))

J=0

The geometric series can be summed to give

0

m=_4’__j ‘Ilp ps) 1 (eih(z—a)+Ue—ih(z-—a))(e—ih(z ~a) | pp2iblasd), ,h(z,-a))

1-UVe 2ih(a+b)

The direct path contribution of the scatterer is the T-matrix of the scatterer.
Using the spherical wave representation, this contribution is

@, zzzvlpml(r) pmt, p'mt € pmt

pml p'm'l’

where: v, (r)=h(k)Y,,,(6,4) is an outgoing spherical wave, Tis the transition
matrix of the scatterer in spherical coordinates, and ¢, are the expansion
coefficients of the total wave incident on the scatterer.

To use this in the cylindrical coordinate system of our waveguide we need the
transformation between cylindrical and spherical wave functions. For the z axis
of the scatterer parallel to the z axis of the coordinate system, this transformation
is given by

2% AN . cosm@, p=even
@=(22) [ S5, (1) ) (gppee }
o sinmg@, p=odd

where the plus sign is used for z>0 and the minus sign for z<0. The B,, functions
convert the spherical functions into cylindrical functions and are given by
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where B are the associated Legendre functions.

Assuming that the field point is above the scatterer (z>0) we use the plus sign in
the transformation equation and obtain the following expression for the scattered
field can be written as

cosmg
®,, = Z(”’“ j [Ea 2)
pml 27 kh sin m¢

o0 -1 -1 -1
Z{B(ﬁ] Ve M,)Bml(_g) +Ue,-,,<2a_z)3m(gw_) +We-,-,,[z-z(a+,,)13m(_
o k k k

2ik(a+b))f
X (l Ve E T o, gt € pimit

pm'l

The terms in the sum over j are : the scattered field propagating directly from the
scatterer to the field point, the scattered field reflecting from the lower interface,
the scattered field reflecting from the lower interface, and the scattered field
reflecting once from each interface. As above, the term raised to the /" power
adds the additional multiples to the sum. The resuit is

D, = kZAple pml,pm't € p (43)

pml p'ml

where the vector A is given by

. & Cosm¢ qdq 1 ih(z-a) —ih(z-a)
Apml (r)_ 1(2 J {sm m¢}J. e21h(a+b) (e +Ue )

-1 -1
x B"ﬂ (i’_ tha +Ve 21k4( a+b)Bm1 _ 11_ e—iha
%) ¢ x

The next step is to determine the expansion coefficients of the total field incident
on the scatterer. This is done using the “effective field” concept in which the
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incident field is expressed as the source field and the scattered field with the
direct scattering contribution removed, i. e.

®,. .=, +@,.,-0)

incicent

Since none of the three terms above have singularities within the layer containing
the source and scatterer, they can be expanded in terms of regular spherical
wave functions. For this expansion, we have z < z, since we are expanding
about the origin of coordinates located within the scatterer. Note that this
requires using the opposite sign for the exponential in the free-field Green’s
function than we have been using. For the incident wave we have the expansion
used above,

(Dincicent = Z pml Re \Ppml (r) (44)

pml

For the source term we will convert Eq. 41 to spherical coordinates. The first
step is to separate out the source and receiver parts of the Bessel function in Eq.
41 using

0

)= 2., (ap) . (ap, )cosm(p - 4,)

m=0

Jo(qip —Ps

Next, expand the cosine and note that the two terms are equivalent to a sum
over parity to get

Doy S e ,,,(qp)/m(qps){"f’smw)“s"’(@)}

> w0 sin m(¢)sin m(¢s)

This expression is nearly that of the regular cylindrical basis functions,

ReX,.(0)- & j e )e{ f’sm(¢)}

sin m(¢)
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The missing exponential is contained in the multipath contributions to Eq. 41.
Finally, using the transformation of the regular cylindrical basis functions to

regular spherical basis functions,

- h
ReX,,(r)=> B, (Z) Re¥,,
1=0
yields the expression for the source field

O, = Z Apml (rs )Re \Ppml (r) (45)

pml

Here, the vector A is the same as that defined above for Eq. 42.

Using the same approach, the final term in the effective field equation can be
obtained as

' scat (DZI = IZ (RI'.';' z Tpmf',p'm'l'cp'm'l" J Re \Pplm (r) (46)

pmll' p'm"l"

where R is the rescattering matrix given by

© -1 -1
R = -2 qhiql UVIZM(M’J){UVBM,(%)BM,(%) p2h(ast) +mm{%)3mr(_ %] 2
- €
0

.| 4
+ UBml (— %)Bml’ (%) eZiha + UI/BmI (._ —ZJB"'" (_ %j e2ih(a+b):|

Combining Egs. 44-46 in the equation for the effective field and equating the
coefficients of the spherical basis functions gives us an equation for the
expansion coefficients

— M m
cpml - Apml (l's)+1 E ’Rl,l' E 'Tpml,p"m'l' Cp"m’l"
G

'l
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In matrix notation, this equation is ¢ = A +i/RTc which can be solved for the
quantity Tc¢ that appears in Eq. 43,

Te=i(T" +R) A

Using this in Eq. 43 yields the final result
@, =D, + %AT (T +R)"A

This equation gives the total acoustic field as the sum of the source field (with
boundary interactions) and the scattered field. Expanding the term containing
the R and T matrices gives the series

iT+TRT+iTRTRT+---

The contribution of the scatterer to the total field is the direct scattering term with
corrections for the rescattering that occurs when the scattered field reflects from
the boundaries and is again incident upon the scatterer.

8. Source and Scatterer in Different Layers

Figure 6 shows the geometry for source and scatterer in different layers. The
source is in a layer bounded by z; and z,. The scatterer is in a layer bounded by
Zzand z4. The scatterer could be located in the seafloor or in the water column,
depending on the location of zs.

For this geometry, the Green'’s function contains the transmission coefficient of
the acoustic field through the layers between the source and scatterer. In the
following , we refer to the layer containing the source as layer 1 and the layer
containing the scatterer as layer 2. We will use subscripts 1 and 2 to associate
the quantities h, k, U, and V with the layer containing the source or the scatterer.
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Figure 6. Geometry for source and scatterer.in
different layers

The Green'’s function for this cross-layer geometry is

fl (z )sz (Z)

)= [
po _!h o -p,

where: f,(z,) is the total acoustic field in layer 2 incident upon the interface at z,
£,(z) is the total field at the point z in layer 2, and W is the total plane wave
transmission coefficient through the layers between layer 1 and layer 2. After
carrying out the multipath expansion of the fields in layers 1 and 2 as in the
previous section, we find

s (eihlzJ +Ueih,(22,—z,))
filz,)=e™ 1_U]I/lle2ihl(z,—zz)

eih223 (e—ihzz +U2e—ih2(224—z))
2ihy(25.24)
1-U,V, el

fz(z):

Inserting these into the Green'’s function yields the field produced by the source
at a field point in layer 2,

) iz, (ei}ﬁz: + Uleihl(zzl_ZJ))Weihzzg (e-ihzz + Uze—ihz(Zz,,—z))
1- UlVlezihl(zl—zz) 1— Uszezihz(z3_24)

_ i [adg, (
src—4 jh qlp ps
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The equation for A(rs) for the cross-layer geometry is

12 ([cosme | % iz, i (22-2,)
[ Em qdq iz (e +U,e )
=i — —J s , |14
Apml(rs) 1[272') {sin m¢}'(!‘ hl m(qps)e 1_U1V1e21h,(z|+21)

-1 -1
k2 k2

1- U2V2e2ih2(z3+z4)

X e"”“

The rescattering matrix for the cross-layer geometry is obtained from that above
by substituting z3 for a, z4 for —b, k, for k, U, for U, and V, for V.

9. Normal Mode Formulation

Moving the integration contour into the upper right quadrant recovers the normal
mode formulation for the within-layer and cross-layer problems. The poles of the
integrand occur at the zeros of the denominators. For the within-layer case the
poles are defined by the equation (1 - UVez""("*”))z 0. For the cross-layer case
the defining equation is(l - UlV]ez”"("”z))(l —UZVZez""z(ZS”"))z 0.

. Summary

The T-matrix approach is fully developed and contains all the tools needed for
studying scattering from geological features buried in the seafloor. The theory for
both acoustic and elastic wave scattering exists as well as extensions to multiple
scattering and scattering in a waveguide.

IV. P S COUPLING DUE TO GRADIENTS

Independently propagating shear and compressional waves can exist only when
the acoustic properties of a material do not depend on position. When gradients
exist, the two types of waves couple within the material as well as at interfaces
between two different materials. Expanding in the inverse of the frequency,
Richards*? developed an asymptotic theory for the coupling of shear and
compressional wave potentials and demonstrated decoupling at high
frequencies. The unique and useful aspect of this theory is the use of second
order, rather than fourth order, differential equations for the coupled potentials.
Vidmar® extended this theory to a form valid for all frequencies that became the
basis for estimates* that gradient-driven coupling is important only below about
10 Hz for deep sea sediments. Numerical studies® verified this estimate. Other
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research® showed that gradient driven coupling generates shear waves when
normal coupling at an interface does not take place, i. ., when the shear speed
is zero at the interface.

Recent borehole tomography measurements” in shallow water indicate that
volume inhomogeneities have gradients that are significantly larger (10 times, or
more) than those found in deep ocean sediments. These enormously high
gradients raise the possibility that gradient-driven PS conversion could be an
important acoustical process at frequencies up to 1 kHz. A recent theory' of
scattering from these inhomogeneities has been carried out but does not include
shear wave coupling.

The remainder of this section reviews the theory of PS coupling as developed in
Refs. 42 and 43.

A. Theory for Homogeneous Media

The description of motion in terms of potentials for a homogeneous layer
illustrates the fundamental approach used for heterogeneous media. We begin
with the equation of motion for the vector displacement u for a material with
density p and Lamé parameters A, and p

pw2u=—(i+2,u)VV-u+,quV><u (47)

and the decomposition of the displacement into compressional and shear
potentials as

u=Vd+Vx¥ (48)

The usual procedure is to substitute Eq. 48 into Eq. 47 (assuming that V- ¥ =0)
yielding a third order differential equation. Further manipulation results in two
decoupled fourth order differential equations for the compressional and shear
wave potentials.

2
VZ{VZ(D +‘”—2<1>} =0
c
r

2
Vz{vz\hw—zfi’}:o
C

s
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where we have used the definitions of the shear speed ¢ = u/p and the
compressional speed cf, = (l + Zp)/ p.

Upon assuming that the quantities in brackets are zero, we have the usual
second order differential equations for the potentials. When applied to
heterogeneous media, this approach yields coupled fourth order differential
equations.®®

Another approach is to note that Eq. 47 already has the form of Eq. 48 and to
then define the potentials directly from Eq. 47 as

(I>=—22—V-u
CP

2

=~ w
¥Y=-""Vxu

c2

5

It follows from Eq. 47 that

This approach avoids using fourth order differential equations and, when
generalized to heterogeneous media, it produces coupled second order
differential equations.

B. Theory for Heterogeneous Media

We begin with the equation of motion for a heterogeneous solid in Cartesian
coordinates*. For simplicity, we consider wave motion in the x-z plane in a
material with gradients in the z direction only. The time dependence is e”*. The

dependence on x is given by e’* which follows from spatial invariance along the x
axis.
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1. Weakly Coupled Potentials

The resulting equation of motion for a harmonic wave is
po’u= —(A+2u)VV-u+/N><qu—/1’iV-u—,u'(ixqu+2%u—) (49)
' 74

where z is a unit vector in the direction of the positive z axis and the prime
indicates a derivative with respect to z.

We next assume that the displacement can be written in terms of potentials with
some additional functions that will allow us to recover Eq. 49.

U= VD4 VX (50)

1 2

For motion in the x-z plane, the vector potential is given by ‘?(x, z)=§¥(x,z2)
where y is a unit vector along the positive y axis. As in the homogeneous case,
we define the potentials in terms of the displacement vector, but with some
additional (as yet unknown) functions in the definition.

®=aV-(f,u) (51)
¥ = gV x(fu)

The functions f,, f,, a, and B depend on z alone. They will allow Eq. 50 to
duplicate the first and second derivative terms in Eq. 49. The vector s contains
the remaining terms in Eq. 47 that are linear in the components of u. We
proceed by calculating the quantity

u‘=ivq>+-1—Vx\if

1 2

and comparing the resulting expression with Eq. 49.
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The two terms of u” are

?I—V(D aj}V(V u)+z(af2)V ‘u+ f(zx(qu)+a:) (af) 2(z-u) and

1 1 1

2 2 2 } (ﬂff‘)zx(zxu)

LRV 'Bff‘Vx(qu) ('B;‘) zx(qu)+’Bff‘{"(V ‘u)- >

Comparing the terms containing the second derivative of u in u* with Eq. 49
provides the following two equations.

L_ ) o
A po
S m

'sz pw’

The first derivative terms provide the following three equations.

@h)  Bf___A
/ S pao’
af2’+(ﬂf1) _ M

= 53
/i S pa)2 (3)
af, Bg _ _, ¥
VA paw’

‘Defining g =f//f,and g, = £,/ f, , solving for o« and B in Eq. 52, and substituting

into the first two equations of Eq. 53 yields the following.
A+2ul p 2u'
- 53
&= l+u(p i+2ﬂJ 9

g =L(2_ﬂ_'_£_']
2
A+pulp p
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We note that g, + g, = p’/p and that g; and g, depend only on the properties of
the material. Substituting a, B, g+, and g. into the third equation of Eq. 53
produces an identity. Once we know g; in terms of the material parameters, it is
easy to calculate f. From the definition of g; it is the depth derivative of ln(f,.).
Integrating over depth from the top of the sediment, and assuming a value of one
at the sediment surface, we have

jdggl ()

fe)=e’

We next recover Eq. 49 by defining s as containing the terms in u* which are
linear in u.

s= _(_61.22_’)_5(2.“)4_ (ﬂ;") 2x(zZxu) (55)

1
Manipulating the coefficients in Eq. 55 and substituting into Eq. 50 gives us

2

2
u:fivq>+-;—Vx\?+“’—‘2iux+5’%iu2 (56)
1 3 w w
where
2 1 ’ ’
»; =;(ﬂgl + g+ 1g,8,) (57)

1 ! ,
0} =~ G+ 2 £, + (20085 + (1+ 20812, |

The differential equation for @ is obtained by multiplying Eq. 56 by f,, taking the
divergence of the result, and multiplying by a to produce @ as defined in Eq. 51.
Multiplying Eq. 56 by f, taking the curl, and multiplying by B produces the
differential equation for ¥. The results are
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2
Vo (g, —gl)<1>'+D]( A’jf"zﬂ)cb = £ID; +£:(D, = D))lu, + (D, = D Ju; (58)

2
VZ\P*‘(gl "gz)lP"*'Dz(&Z)"‘)\P=f2[_D1'+g1(Dz _Dl)]ux +f2(D2 _Dl)u;

In Eq. 58 we have defined two auxiliary functions D and D, as

2
D =1-2. (59
w
2
p,=1-22
()

Equation 58 shows the high frequency decoupling of the potentials ® and ¥.
From Eq. 59, the terms involving D, — D, and the derivatives of D; and D, are
proportional to 1/w* . Using Eq. 56 to substitute for the components of the
displacement in Eq. 58 produces two terms proportional to 1/w? involving both
potentials (hence, the coupling between them) and two additional terms
proportional to 1/w* involving the components of the displacement. Continuing
the process generates a series involving 1/w* to higher powers multiplying
increasingly high derivatives of the potentials. To show decoupling, one argues
that for sufficiently high frequencies the right side of Eq. 58 is negligible
compared to the left side. Hence, the potentials are essentially decoupled at high
frequencies. While this argument is true, it is not clear just how high in frequency
one must go to achieve decoupling in view of the increasingly higher order
derivatives of the potentials appearing on the right side of Eq. 58. We address
this difficulty below and derive a quantitative definition of the decoupling
frequency. Decoupling also occurs for special materials for which D/ = D, =0
and D, =D,.

2. Exact Coupled Potentials

We follow Ref. 43 to derive second order differential equations for ® and ¥ that
are exact, i. e., they do not contain the components of the displacement. We start
out by writing Eq. 56 in component form and combine terms to obtain

Du_ =|~(va), + fi(v ), (60)

Dy, =| L (va), +—1—(qu’)2

L/1 2 .
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We now write Eq. 60 in vector form by defining a coupling tensor C and its
inverse as

(Di& 0
C- (60)
L 0 Dz
)
LT
c' =D
R
\ D,

Substituting into Eq. 58 gives an equation for the displacement in terms of the
potentials without extra displacement components on the right side.

u=C" -(lvqniVx\'PJ (62)

1 2

The next step is to use Eq. 62 and Eq. 51 to again derive the differential
equations for the potentials. As in the previous section, we multiply Eq. 62 by f,,
take the divergence, and multiply by o to produce the differential equation for ®.
Multiplying Eq. 62 by f;, taking the curl, and multiplying by B produces the
differential equation for V. Recalling that the x dependence of the potentials is
through e, the result is

” D! , D a)z . D, D ’
o +(g2—gl —Dzjcp +—2(Dl——5’]<1>:161'—{52-‘P+[52-—1}P} ()

2
2 Dl ) 2 2 1

, D\, D w® , D] D ,
¥ +[g1 - & _BL}F +B'—(D2—2—52)\P:—15QB¢+(T)‘—-1}D}

1 2 .fl 1 2

S

The terms on the right side of Eq. 63 provide the coupling between the potentials
without reference to components of the displacement.
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3. Displacement and Stress for Exact Coupled Potentials

We need to know how to express the components of the displacement vector
and the stress tensor in order to carry out numerical computations. The results
for the displacement follow directly from Eq. 62.

“. ;[L«zq,_iqﬂ}
Dl .fl f2

u, :L[—I—Q%E‘PJ
D\ A

The expressions for the stress tensor are also straightforward, but tedious, to
derive. The results are

(wz_2c352jg_—pgﬁg_pgzcii51+p2c3,~5£
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4. Decoupling of Exact Potentials

Decoupling of ® and ¥ occurs under two conditions. First, there is decoupling at
high frequencies. Because coupling terms are proportional to the derivatives of
Dy and D, or to D, — D, decoupling occurs at high frequencies in agreement with
Ref. 42. The second kind of decoupling occurs for particular media for which
D;=D; =0 and D, =D,. This is the case for the material found in Ref. 50 for
which g = u,(1+6z)", A=2,(+bz), 4, =, and p = p,. Direct substitution into
Egs. 57 and 59 yields o = w; = -6u,b* and verifies decoupling at all
frequencies. Note that in evaluating Eq. 57 we do not need to know f; and f, but
only g7 and g, which are defined in terms of material parameters.

5. Resonance Frequencies

Equation 63 has an interesting feature. There is a potential resonance in the
system at the frequencies oy and w; for which the denominators in several terms
of Eq. 63 can be zero. The significance of this resonance has not been fully
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explored. Here, we examine the resonant frequencies as a function of the
gradients of seafloor parameters.

The first step is to develop expressions for the resonant frequencies based on
density, shear velocity, compressional velocity. Equation 57 gives the resonant
frequencies in terms of g4, g2, the density and the depth derivative of the Lamé
parameters. Our goal here is to develop an expression that involves more
readily obtainable quantities such as density, shear velocity and compressional

velocity. We start by introducing the shear and compressional velocities into Eq.

57 and eliminating the derivatives of the Lamé parameters using the following
relations obtained from the derivative of the definition of the shear and
compressional velocities

ﬁ_=£_+2_-‘
Hop €
(A+24) _p' %
A+2u  p c,

The resulting resonant frequencies are

o} =c! (£+25—+g.Jg,+g{}
C

I\ P x
’ c’
0)22:(;2 "p_+2"i+g2 gz+g;

g1, and g and their derivatives are given by

and
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a) Resonance Frequencies for Typical Sediments

In this section we estimate the resonance frequencies for typical sediments. First,
we will use typical values for gradients to identify the driving terms in the
expressrons for g1, g2, and their derivatives. Typlcal parameters for near surface

sediments®' are given in Table 2.

Clay Medium Sand
Density 1.40 g/cc 2.00 g/cc
Compressional Velocity 1490 m/s 1620 m/s
Shear Velocity 50 m/s 150 m/s

Table 2. Typical values of surficial sediment parameters.

Using the fact that ¢’ /cf, ~1x107 for clay and assuming that second derivatives
are negligible, the expressions for g+, g, and their derivatives are approximately

given by




We next identify the dominant terms involving the parameter gradients. For deep
ocean sediments (clay), typical gradients are: p’=1.2x10" g/cc/m , c,=15/s,
and c, =4.0/s. The values of the ratios of the parameters to their derivatives are
approximately p'/p ~1x107/m, ¢, /c, ~1x10®/m, and c|/c, ~1x10™" /m. The
relative gradients of density and compressional velocity are comparable while the
relative gradient of shear speed is about two orders of magnitude larger.

Keeping only the most significant terms in the expressions for the resonance
frequencies, we obtain

Substituting numerical values we estimate the resonant frequencies to be

f~2 o 07Hz and 22 ~1.6Hz
27 2

Thus, gradient driven coupling of compressional and shear waves is negligible
for deep sea sediments for frequencies above about 10 Hz. Since parameter
values for shallow water sediments do not change by orders of magnitude, the
same conclusion is true for shallow water sediments.

b) Resonance Frequencies for Volume Inhomogeneities.

As discussed at the beginning of this section, there is evidence*’ that volume
inhomogeneities in shallow water sediments have parameter gradients that are
significantly larger (10 times, or more) than the large scale gradients. In this
section, we present estimates of the resonance frequencies associated with
these gradients. To estimate gradients we assumed a transition from a clay to a
sand sediment over distances from 1 cm to 20 m.

Figure 7 shows that the resonance frequency can be quite large for a thin
transition layer. Frequencies above 1 kHz occur for transition layers of 1-5 cm,
not an unreasonable thickness for volume inhomogeneities. For transition layers
about 10 m thick, the resonance frequencies are on the order of 1 Hz, the value
estimated for deep water sediment types.
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Figure 7. Dependence of resonance frequency on transition layer thickness.
C. Summary

We reviewed the theoretical treatment of gradient driven coupling of
compressional and shear waves. The theory of a homogeneous layer showed
the basic approach for developing second order, rather than fourth order,
differential equations for the coupled potentials. The basic concept introduced
was that of defining the potentials in terms of the displacements. Applying this
concept to a depth dependent layer yielded two differential equations for weakly
coupled potentials, for which the coupling is proportional to the inverse of the
square of the frequency. The potentials reduce to the ordinary shear and
compressional potentials for a homogeneous media. The two potentials are
coupled by terms in the displacements. A refinement of the theory, using tensor
scale factors, produced exact coupled differential equations with the coupling
terms related to the potentials and their derivatives.

The differential equations for the exact coupled potentials demonstrate
decoupling at high frequencies and at all frequencies for media with specific
properties. Decoupling at high frequencies occurs when the frequency is large
compared to two frequencies whose values depend on the material parameters
and their gradients. These frequencies are called “resonance frequencies” since
they appear in the denominators of terms in the differential equations. Should
the frequency be equal to one of the resonance frequencies, the denominators
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vanish. The significance of these resonance effects has not been examined. For
typical deep sea sediments the resonance frequencies are around 1 Hz. They
can be on the order of 1000 Hz for the large gradients thought to occur for
volume inhomogeneities in shallow water sediments.

V. RECOMMENDATIONS

Our investigation of T-Matrix theory and the theory of gradient driven coupling of
shear and compressional waves finds that both hold great promise for developing
an understanding of scattering from the subbottom in shallow water areas.

Below we give our recommendations for further work.

A. T-Matrix

The T-matrix approach to scattering is well developed and contains almost all the
tools needed to address some of the issues dealing with the time spread induced
by scattering from the seafloor. One such issue is the role of scattering from
sedimentary layers with finite lateral extent. Scattering from the edges of layers
is one possible mechanism for producing backscatter from regions with a smooth
sediment surface. Another is the problem of predicting the attenuation parameter
of sedimentary materials for Navy databases. At present the attenuation is a
“total energy” attenuation which includes effects of scattering as well as intrinsic
attenuation. Understanding these issues would provide the basis for
improvements to the geoacoustic databases used by the Navy to predict the
performance of sonar systems.

The approach we recommend would be to first develop numerical models of the
T-matrix of several canonical objects that would serve as entries in a catalog of
scatterers. The objects would include: (1) nearly spherical layered objects that
would approximate a density or velocity inhomogeneity, (2) scatterers
approximating the shape of gas trapped in sediments (spherical to disk shaped),
(3) pancake shaped (oblate spheroid), fluid, object with a thickness and lateral
extent typical of sedimentary layering, and (4) objects approximating the shape of
other buried objects such as rocks and shells. The numerical models must be
broadband so the impulse response of the scatterer can be obtained as an
inverse Fourier transform. Once the T-matrix is available, the methods
summarized above can be applied to study scattering from single objects buried
in a background sediment. Next, scattering from several objects in a typical
geometry would be studied to determine the importance of multiple scattering,
edge effects, and orientation relative to the horizontal. Scattering from several
realizations of the layering would be carried out to understand the variability of
scattering and time spread. Finally, scattering in a waveguide would be
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examined using simplified models based on the earlier work with the goal of
determining the importance of scattering in relation to attenuation and other
parameters.

B. Gradient Driven Coupling

The theory for gradient driven coupling of compressional and shear waves is well
developed with two exceptions. First, a stochastic theory does not exist. Such a
theory is needed to explore the role of gradient driven coupling for volume
inhomogeneities. Second, the significance of the resonance frequencies
described above has not been explored. If the resonance leads to instability in
the system, it might be related to the onset of seismic activity. For the high
gradients estimated for volume inhomogeneities in shallow water, the resonance
could be an important loss process converting compressional energy to shear
energy with greater efficiency than coupling at an interface between two layers.
We recommend further research to address these issues.

A fully developed theory of gradient driven coupling would provide the basis for
determining the importance of coupling to shear waves through scattering from
volume inhomogeneities. This is an important issue to resolve since it has
implications for the content of Navy geoacoustic databases and the complexity of
Navy performance prediction models. |f shear wave coupling is important, new
propagation models will be needed that will typically require an order of
magnitude more computational resources than current models. If shear coupling
is not important, simplified models and databases can be used.
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